Large Language Model1 Guiding Pretraining in Reinforcement Learning with Large Language Models Paper: https://arxiv.org/pdf/2302.06692.pdf0. Abstract강화학습 알고리즘은 밀집되고 (dense) 잘 형성된 보상 함수가 없는 것이 일반적인 문제점이런 한계를 극복하기 위해 내적 동기부여 (intrinsically motivated) 탐험 기법이 사용됨 → 에이전트가 새로운 상태에 방문하는 경우 보상을 제공하지만 이런 방법은 매우 규모가 큰 환경에서 탐색된 새로운 상태가 실제 문제 해결과 무관한 경우가 많을 때에는 별 도움이 되지 못함본 논문에서는 탐험을 위한 사전 지식으로 텍스트 정보를 사용하는 기법을 제안 → ELLM (Exploring with LLMs)에이전트의 현재 상태를 묘사한 정보를 프롬프트로 한 언어 모델이 제안한 목표를 달성하는 경우 보상 제공대규.. 2024. 11. 21. 이전 1 다음